
Week 10: Lab
Module 4: Techniques

Collaboration level 0 (no restrictions). Open notes.

Longest increasing subsequence:1 A subsequence of a sequence (for example, an array,
linked list or string), is obtained by removing zero or more elements and keeping the rest in the
same order. A subsequence is called a substring if its elements are contiguous in the original
sequence. For example:

1. gorit, algo, rithms are all substrings of algorithms

2. grm, lori, lot, agis,gorims are all subsequences of Algorithms

3. algomi, og are not subsequences of Algorithms

The problem: Given an array A[1..n] of integers, compute the length of a longest increasing
subsequence (A sequence B[1..k] is increasing if B[i] < B[i + 1] for all i = 1..k − 1). For example,
given the array

{5, 3, 6, 2, 1, 5, 3, 1, 2, 5, 1, 7, 2, 8}
your algorithm should return 5 (for e.g. correponding to the subsequence {1, 3, 5, 7, 8}; there

are other subsequences of length 5).
Describe an algorithm which, given an array A[] of n integers, computes the LIS of A.

EXAMPLES:

Input: arr[] = {3, 10, 2, 1, 20}

Output: Length of LIS = 3

The longest increasing subsequence is 3, 10, 20

Input: arr[] = {3, 2}

Output: Length of LIS = 1

The longest increasing subsequences are {3} and {2}

Input: arr[] = {50, 3, 10, 7, 40, 80}

Output: Length of LIS = 4

The longest increasing subsequence is {3, 7, 40, 80}

Input: A[]={0,8,4,12,2,10,6,14,1,9,5, 13,3,11,7,15}

Output: Length of LIS = 6

Explanation:Longest increasing subsequence 0 2 6 9 13 15, which has length 6

Input: A[] = {5,8,3,7,9,1}

Output: Length of LIS = 3

Explanation:Longest increasing subsequence 5 7 9, with length 3

1Leetcode #300
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Additional/optional problems

1. Thanksgiving Turkeys:2 On Thanksgiving day, you arrive on an island with n turkeys.
You’ve already had Thanksgiving dinner so you don’t want to eat the turkeys (and maybe you
prefer tofurkey anyway), but you do want to wish them all a Happy Thanksgiving. However,
the turkeys each have very different sleep schedules. Turkey i is awake only in a single closed
interval [a;, bi]. Your plan is to stand in the center of the island and say loudly ”Happy
Thanksgiving!” at certain times t1, ..., tm. Any turkey who is awake at one of the timestj will
hear the message. It’s okay if a turkey hears the message more than once, but you want to
be sure that every turkey hears the message at least once.

Design a greedy algorithm which takes as input the list of intervals [ai, bi] and outputs a list
of times t1, ..., tm so that m is as small as possible and so that every turkey hears the message
at least once. Your algorithm should run in time O(nlog(n)).

2. Matching points on a line:3 You are given two arrays of n points in one dimension:
red points r1, r2, ..., rn and blue points b1, b2, ..., bn. You may assume that all red points are
distinct and all blue points are distinct. We want to pair up red and blue points, so that each
red point is associated uniquely with a blue point and vice versa. Given a pairing, we assign
it a score which is the sum of distances between each pair of matched points.

Find the pairing (matching) of minimum score. Hint: Aim for an O(n lg n) algorithm. Draw
examples for small valus of n to get intuition.

Example: Consider the input where the red points are r1 = 8, r2 = 1 and the blue points
are b1 = 3 and b2 = 9. There are two possible matchings:

• match r1 to b1 and r2 to b2: the score of this matching is |r1 − b1|+ |r2 − b2| = |8− 3|+
|1− 9| = 13

• match r1 to b2 and r2 to b1: the score of this matching is |r1 − b2|+ |r2 − b1| = |8− 9|+
|1− 3| = 3

The algorithm shoud return the cost of the optimal matching, which is 3.

2Also from Stanford
3Credit: reproduced from Stanford University, cs161, fall 2016-2017
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Appendix A: Hints

• Longest increasing subsequence:

Use the following subproblem: Let L(i) be the length of a LIS starting with A[i].

Express L(i) rercursively.

Assume you computed L(i) for all i = 1, 2, ..., n. How do you find the LIS of A?

• Matching points on a line:

Think greedily, and argue with an exchange argument.
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Appendix B: Solutions

1. Finding the LIS (Longest Increasing Subsequence):

• Notation and choice of subproblem: Let L(i) be the length of a LIS starting with A[i].

• To find the LIS(A), we need to return max{L(i), 1 ≤ i ≤ n} The reasoning is that we
don’t know where LIS(A) of A starts, but it must start at some index i in A. Then
LIS(A) will be equal to L(i) for that index i.

• Optimal substructure of L(i): Consider a LIS starting with A[i], and denote it LIS(i).
Let A[j], with j > i, be the element after A[i] in LIS(i). Then LIS(i) must consist of
A[j] + LIS(j). [insert here the usual justification by contradiction]. This leads us to a
recursive definition of L(i).

• Recursive definition of L(i):

– Base case: if i == n then there is no element after A[n] so L(n) = 1

– Otherwise if i < n:

L(i) = 1+max{L(j) , where i+1 < j ≤ n and A[i] < A[j]}, or L(i) = 1 if no such j exists

Explanation: We know that L(i) includes A[i]. The second element in the L(i) must be
an index j such that j > i and A[j] > A[i]. By optimal substructure, it must be that
the subsequence starting at j is L(j) (if this was not the case, ....[insert here the usual
justification by contradiction]). Since we do not know what j is, we try all indices j and
pick the largest.

• Running time of L(i): Without DP, exponential.

• Computing L(i) with dynamic programming:

We use a table table[1..n] such that table[i] will store the solution returned by L(i).

Initialize: set table[n] = 1, and table[i] = 0 for i = 1, ..., n− 1.

L(i)

//if this was computed before, retrieve it from the table

if table[i] !=0: return table[i]

//otherwise, compute it and store it in the table

max = 0

for j=i+1 to n do:

if A[j] > A[i]:

thisj = 1 + L(j)

if thisj > max: max = thisj

//max is the solution to L(i)

table[i] = max

return max

• To find the length of a LIS in A we initialize the table as above, and then call L(i) for
i = 1, 2, ..., n (note that it is not sufficient to call just L(1) because it will only recurse
on L(j) whith A[j] < A[i], so it won’t fill the whole table). Then we traverse the table
and find that largest value of L(i). That is the L(A). The logic is that LIS(A) must
start at some index i, and LIS(A) = L(i).

• Analysis: The table has size n, and each table[i] takes O(n) to compute ignoring the
cost of the recursion. Because of the table, each L(i) is computed precisely once, and
the total cost of the recursion is Θ(n). So overall Θ(n) + Θ(n) ·O(n) = Θ(n2).
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2. Thanksgiving turkeys: Isn’t this the same as activity selection?

3. Matching points on a line:

Algorithm: Sort the red and blue points separately, and match them in order, that is, r1
with b1, r2 with b2, and so on (here I assumed that they are numbered in sorted order). This
is a greedy algorithm.

Analysis: O(n lg n) to sort plus O(n) to match.

Correctness: The hard part is to prove that this is always correct. To do so, it is sufficient to
show that there is an optimal solution that contains the first greedy choice, namely matching
r1 to b1.

Proof: Let O be an optimal matching O and assume that it does not match r1 to b1. Suppose
that r1 is matched with bi and b1 is matched with rj . We modify O so that r1 is matched
with b1 and rj is matched with bi. Denote by O′ the resulting matching. We’ll show that
the cost of O′ is ≤ O, therefore O′ must be an optimal matching. Therefore there exists an
optimal matching that matches r1 to b1.

The cost of O′ is r1 − b1|+ |rj − bi| + ....

The cost of O is r1 − bi|+ |rj − b1| + ....

To show that the cost of O′ is ≤ O, we need to show that |r1−b1|+ |rj−bi| ≤ r1−bi|+ |rj−b1|
Assume wlog that r1 < b1. Then

• case 1: r1 < rj ≤ b1 < bi ...

• case 2: r1 < b1 ≤ rj < bi ...

• case 3: r1 < b1 < bi ≤ rj ...

In each case, draw the points in order to visualize, and the rest will follow.
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