
Lab 13: Shortest Paths
Module: Graphs

Collaboration level 0 (no restrictions). Open notes.

1. Step through Dijkstra(G, s, t) on the graph shown below. Complete the table below to
show what the arrays d[] and p[] are at each step of the algorithm, and indicate what path is
returned and what its cost is. Here D represents the set of vertices that have been removed
from the PQ and their shortest paths found (in the notes we denoted it by S). .

2. Consider the directed graph below and assume you want to compute SSSP(s).

s a

d

b c5 1

1

-9

10

1

(a) Run Dijkstra’s algorithm on the graph above step by step. Are there any vertices for
which d[x] is correct? Are there any vertices for which d[x] is incorrect? Why?

(b) Now run Bellman-Ford algorithm, and assume the edges are relaxed in the following
order: {bd, cb, ab, sc, sa}. For each round of relaxation, show the distances d[x] at the
end of that round.

(c) How many rounds of relaxation are necessary for this graph, if the edges are relaxed in
this specific order?

(d) In general, what is the worst-case number of rounds in Bellman-Ford algorithm for a
graph of |V | vertices?

(e) The bound aabove is not tight. Make a connection between the longest shortest path
and the number of rounds that are necessary (in the worst case) for Bellman-Ford to
converge.

(f) Give an order of relaxing edges for the graph above which correctly computes shortest
paths for all vertices after just one round.

3. Give example of a graph G=(V,E) with an arbitrary number of vertices for which one round
of relaxation in Bellman-Ford algorithm is always sufficient, no matter the order in which the
edges are relaxed.

4. Give example of a graph G=(V,E) with an arbitrary number of vertices for which |V | − 1
rounds of relaxation in Bellman-Ford algorithm are always necessary in the worst case.

5. Consider Bellman-Ford algorithm and remember that by one round of relaxation we mean
that all edges in the graph are relaxed (in arbitrary order). Fill in the sentences below so
that they are true:

(a) After one round of edge relaxation, it is guaranteed that d[x] = δ(s, x) for all vertices x
whose shortest paths from s consist of ..

(b) After i rounds of edge relaxation, it is guaranteed that d[x] = δ(s, x) for all vertices x
whose shortest paths from s consist of ..

6. You are given an image as a two-dimensional array of size m × n. Each cell of the array
represents a pixel in the image, and contains a number that represents the color of that pixel
(for e.g. using the RGB model).

A segment in the image is a set of pixels that have the same color and are connected: each
pixel in the segment an be reached from any other pixel in the segment by a sequence of
moves up, down, left or right.

Design an efficient algorithm to find the size of the largest segment in the image.

2

Additional problems: Optional

1. Longest simple paths don’t have optimal substructure: Consider a directed graph G,
and assume that instead of shortest paths we want to compute longest paths. Longest paths
are defined in the natural way, i.e. the longest path from u to v is the path of maximum
weight among all possible paths from u to v. Note that if the graph contains a positive cycle,
then longest paths are not well defined (for the same reason that shortest paths are not well
defined when the graph has a negative cycle). So what we mean is the longest simple path,
(a path is called simple if it contains no vertex more than once).

Show that the the longest simple path problem does not have optimal substructure by coming
up with a small graph that provides a counterexample.

Note: Finding longest (simple) paths is a classical hard problem, and it is known to be
NP-complete.

2. Arbitrage: Suppose the various economies of the world use a set of currencies C1, C2,, Cn

–think of these as dollars pounds, bitcoins, etc. Your bank allows you to trade each currency
Ci for any other currency Cj and finds some way to charge you for this service (in a manner
to be elaborated in the subparts below). We will devise algorithms to trade currencies to
maximize the amount we end up with.

(a) Suppose that for each ordered pair of currencies (Ci, Cj), the bank charges a flat fee
of fij > O dollars to exchange Ci for Cj (regardless of the quantity of currency being
exchanged). Devise an efficient algorithm which, given a starting currency Cs, a target
currency Ct, and a list of fees fij for all i, j ∈ {1,, n} computes the cheapest way (that
is, incurring the least in fees) to exchange all of our currency in Cs into currency Ct.
Justity the correctness of your algorithm and its runtime.

(b) Consider the more realistic setting where the bank does not charge flat tees, but instead
uses exchange rates. In particular, for each ordered pair (Ci, Cj), the bank lets you
trade one unit of Ci to rij units of Cj . Devise an efficient algorithm which, given
starting currency Cs, target currency Ct, and a list of rates rij , computes a sequence
of exchanges that results in the greatest amount of Ct. Justify the correctness of vour
algorithm and its runtime.

Hint: How can you turn a product of terms into a sum?

(c) Due to fluctuations in the markets, it is occasionally possible to find a sequence of
exchanges that lets you start with currency A, change into currencies B, C, D, etc..
and then end up changing back to A with more money than you started (this is called
arbitrage). Come up with an algorithm that, given a set of currencies and the exchange
rates rij between them, determines if arbitrage is possible.

3

