Rod cutting summary

- The problem: Given a rod of length n and a table of prices $p[i]$ for $i=1,2,3, \ldots, n$, determine the maximal revenue obtainable by cutting up the rod and selling the pieces.
- Notation and choice of subproblem: We denote by $\operatorname{maxrev}(x)$ the maximal revenue obtainable by cutting up a rod of length x. To solve our problem we call maxrev(n).
- Recursive definition of maxrev (x) :

$\operatorname{maxrev}(x)$

if $(x \leq 0)$: return 0
For $\mathrm{i}=1$ to x : compute $p[i]+\operatorname{maxrev}(x-i)$ and keep track of max
RETURN this max

- Correctness: tries all possibilities for first cut and recurses on the rest (correct bec. of optimal substructure).
- Dynamic programming solution, recursive (top-down) with memoization:

We create a table of size $[0 . . n]$, where table $[i]$ will store the result of maxrev(i. We initialize all entries in the table as 0 . We call $\operatorname{maxrev} D P(n)$ and return the result.
maxrevDP (x)
if $(x \leq 0)$: return 0
IF table $[x] \neq 0$: RETURN table $[x]$
For $\mathrm{i}=1$ to x : compute $p[i]+\operatorname{maxrevDP}(x-i)$ and keep track of max
table $[x]=\max$
RETURN table $[x]$
Running time for $\operatorname{maxrev} D P(n): \Theta\left(n^{2}\right)$

- Dynamic programming, iterative (bottom-up):
maxrevDP_iterative(x)
create table $[0 . . n]$ and initialize table $[i]=0$ for all i
for ($k=1 ; k \leq n ; k++$)

$$
\begin{aligned}
& \text { for }(i=1 ; i \leq k ; i++) \\
& \quad \text { set table }[k]=\max \{t a b l e[k], p[i]+\text { table }[k-i]\}
\end{aligned}
$$

RETURN table[n]
Running time for maxrevDP_iterative $(n): \Theta\left(n^{2}\right)$

- Computing full solution (without storing additional information while filling the table):

```
Input: The table table[0..n] as computed above, where table[i] stores the maxrev obtainable
from a rod of length \(i\).
Output: the set of cuts corresponding to table[n]
curLength \(=n\)
while (curLength \(>1\) ) do:
    for \((i=1 ; i \leq\) curLength \(; i++)\)
    //is the value table[curLength] achieved via a first cut of length \(i\) ?
    if table \([\) curLength \(]==(p[i]+\) table \([\) curLength \(-i])\) :
            output that a cut of length \(i\) was made
            curLength \(=\) curLength \(-i\)
```

Running time: $\Theta\left(n^{2}\right)$, no extra space

- Computing full solution (with storing additional information while filling the table):

In addition to table[0...n] we use an array firstcut $[0 . . n]$ where firstcut $[i]$ will store the first cut in maxrev (i). We can extend the algorithm for computing maxrevDP(x) (either recursive or iterative) to also compute firstcut $[x]$: basically if the maximum revenue for x is achieved with the first cut being of length k, we'll store that $\operatorname{firstcut}[x]=k$.

```
Input: The table table[0..n] as computed above, where table[i] stores the maxrev obtainable
from a rod of length i. And firstcut[0..n] where firstcut[i] will store the first cut in
maxrev(i).
Output: the set of cuts corresponding to table[n]
curLength = n
while (curLength > 1) do:
    output a cut of length firstcut[curLength]
    curLength = curLength - firstcut[curLength]
```

Running time: $\Theta(n)$, with $\Theta(n)$ extra space for firstcut $[0 . . n]$

