Algorithms Crash Review

Laura Toma, csci2200, Bowdoin College

Here is a list of topics studied in algorithms this semester:
1. Worst case, best case running times.
e e.g. Binary search runs in logarithmic time worst case and O(1) best case.
2. Asymptotic growth of functions (O, 2, 0). Used to express efficiency (running time, space).

e This algorithm runs in O(n?) time and uses ©(n) space.

e This algorithm runs in ©(nlgn) worst case.
3. Recurrences. Used to analyze complexity of recursive algorithms.

e Example: mergesort recurrence: T'(n) = 27'(n/2) + ©(n) solves to O(nlgn).
4. Comparison-based sorting

e Quadratic sorts: insertion sort, bubble sort, selection sort

e Mergesort, Heapsort, Quicksort, Randomized quicksort

e Comparison-based sorting lower bound: Any sorting algorithm that uses only comparisons
to order the elements must take Q(nlgn) in the worst case.

5. Sorting without comparisons

e Not a general purpose sort; makes additional assumptions, usually that the keys to be
sorted are integers in a small range.

e Example: sort n keys that are all integers in the range {—10, ..., 10}.

e Counting sort, Radix sort, Bucket sort

e Runs in O(n + k) where k is the range
6. Selection: given a set of n elements, find the ith smallest.

e Idea: partition and recurse. Quick-Select in expected O(n) time ; O(n) Smart-Select in
worst-case O(n) time. Theoretically better but in practice Quick-Select is preferred.

7. The binary heaap

e Implements the priority queue ADT, and supports FindMin (in O(1) time), DeleteMin,
Insert, ChangeKey all in O(lgn) time

e A max-heap is defined symmetrically



8. Binary search trees (BST) and red-black trees
e A BST supports insert, delete, search, min, max, pred, succ, all in O(h) time; tree walks
(in-order, post-order, pre-order) inO(n) time.
e A red-black tree is a BST plus additional invariants that ensure that h = O(Ign).
e On red-black-trees all above operations run in O(lgn) time which includes the additional
time to maintain h = ©(lgn) via rotations
9. Tecnnique: Divide-and-conquer
e Technique that solves a problem by decomposing it into smaller subproblems and solving
each one recursively, and then “merging” their solutions
e E.g. mergesort, maximum partial sum, counting inversions.

e Also: binary search, finding missing number
10. Technique Dynamic programming

e Technique used for solving optimization problems that have optimal substructure and
overlapping subproblems. Store (cache) solutions to subproblems in a table to avoid
recomputation.

e Examples: rod cutting, house robber, 0-1 knapsack, longest common subsequence,
weighted interval scheduling, subset sum, weighted subset sum (0-1 knapsack), longest
common subsequence; skis and skiers, also shortest paths (Bellman Ford)

11. Technique: Greedy algorithms

e Instead of dynamic programming (which does an exhaustive search), make a choice
“locally” and recurse on what’s left. The choice is determined by examing only local
information, without going into recursion to see how good the choice is “globally”.

e Examples: fractional knapsack, activity selection, art gallery guarding. Also Dijkstra
SSSP, Prim and Kruskal’s algorithm for MST are all greedy.

e Greedy heuristics are used a lot in AI but not so much in algorithms (they rarely
guarantee the optimal solution)

12. Graph algorithms

e Graph representation (adjacency list, adjacency matrix)
e Graph traversal: BFS and DFS

— @ can be directed or undirected
— run in linear time O(V + E)

— BFS used to: find connected components, reachability, check bipartiteness (G undirected),
compute shortest paths (G un-weighted, all edges have weight 1)

— DFS used to: find connected components, reachability, find directed cycles, topological
sort (G must be a DAG)

e Directed acyclic graphs (DAGs)



— Topological order: Order of the vertices such that for any edge (z,y), vertex x comes
before vertex y in topological order (all edges are “forward”)

— Any DAG can be topologically ordered in linear O(V + E) time either directly or
via DFS

— Many problems have easier /faster solutions on DAGs. E.g. SSSP on DAGs can be
computed inO(V + E) time; Longest paths on DAGs inO(V + E) (note: on general
graphs longest path is an NPC problem).

Shortest paths (SSSP): Find shortest paths from a vertex to all other vertices
— On DAGs: O(V + E) time
— On general graphs with non-negative weights: Dijkstra’s runs in O(E1lg V') time

— On general digraphs without negaative cycles: Bellman-Ford’s algorithm runs in
O(V - E) and can also detect negative-weight cycles

Minimum spanning tree (MST)
— G: connected, undirected, weighted
— MST can be computed in O(E1lg V') time with Prim’s or Kruskal’s algorithms
— Union-find data structure: supports Find and Join/Union operations.

13. Complexity:

P: problems that can be solved in polynomial time (on a deterministic Turing machine)
N P: problems that can be verified in polynomial time

NPC: a problem is in NPC if it is in NP and all problems in NP reduce to it in
polynomial time. Intuitively, NPC is the core of hard problems in NP.

Some NPC problems: SAT (satisfiability: is there an assignment that makes a given
formula true), traveling salesman (T'SP: find minimum-cost tour), longest path (find the
longest simple path in a graph); find the largest clique subgraph (a clique is a complete
graph).

All NPC problems reduce to each other therefore if any of them is shown to be in P, it
follows they all are and P = NP

The $1M questions: Is P = NP? Not known. Most people believe the answer is NO.



