
Algorithms Crash Review

Laura Toma, csci2200, Bowdoin College

Here is a list of topics studied in algorithms this semester:

1. Worst case, best case running times.

• e.g. Binary search runs in logarithmic time worst case and O(1) best case.

2. Asymptotic growth of functions (O,Ω,Θ). Used to express efficiency (running time, space).

• This algorithm runs in O(n2) time and uses Θ(n) space.

• This algorithm runs in Θ(n lg n) worst case.

3. Recurrences. Used to analyze complexity of recursive algorithms.

• Example: mergesort recurrence: T (n) = 2T (n/2) + Θ(n) solves to Θ(n lg n).

4. Comparison-based sorting

• Quadratic sorts: insertion sort, bubble sort, selection sort

• Mergesort, Heapsort, Quicksort, Randomized quicksort

• Comparison-based sorting lower bound: Any sorting algorithm that uses only comparisons
to order the elements must take Ω(n lg n) in the worst case.

5. Sorting without comparisons

• Not a general purpose sort; makes additional assumptions, usually that the keys to be
sorted are integers in a small range.

• Example: sort n keys that are all integers in the range {−10, ..., 10}.
• Counting sort, Radix sort, Bucket sort

• Runs in O(n + k) where k is the range

6. Selection: given a set of n elements, find the ith smallest.

• Idea: partition and recurse. Quick-Select in expected O(n) time ; O(n) Smart-Select in
worst-case O(n) time. Theoretically better but in practice Quick-Select is preferred.

7. The binary heaap

• Implements the priority queue ADT, and supports FindMin (in O(1) time), DeleteMin,
Insert, ChangeKey all in O(lg n) time

• A max-heap is defined symmetrically

1

8. Binary search trees (BST) and red-black trees

• A BST supports insert, delete, search, min, max, pred, succ, all in O(h) time; tree walks
(in-order, post-order, pre-order) inO(n) time.

• A red-black tree is a BST plus additional invariants that ensure that h = Θ(lg n).

• On red-black-trees all above operations run in O(lg n) time which includes the additional
time to maintain h = Θ(lg n) via rotations

9. Tecnnique: Divide-and-conquer

• Technique that solves a problem by decomposing it into smaller subproblems and solving
each one recursively, and then “merging” their solutions

• E.g. mergesort, maximum partial sum, counting inversions.

• Also: binary search, finding missing number

10. Technique Dynamic programming

• Technique used for solving optimization problems that have optimal substructure and
overlapping subproblems. Store (cache) solutions to subproblems in a table to avoid
recomputation.

• Examples: rod cutting, house robber, 0-1 knapsack, longest common subsequence,
weighted interval scheduling, subset sum, weighted subset sum (0-1 knapsack), longest
common subsequence; skis and skiers, also shortest paths (Bellman Ford)

11. Technique: Greedy algorithms

• Instead of dynamic programming (which does an exhaustive search), make a choice
“locally” and recurse on what’s left. The choice is determined by examing only local
information, without going into recursion to see how good the choice is “globally”.

• Examples: fractional knapsack, activity selection, art gallery guarding. Also Dijkstra
SSSP, Prim and Kruskal’s algorithm for MST are all greedy.

• Greedy heuristics are used a lot in AI but not so much in algorithms (they rarely
guarantee the optimal solution)

12. Graph algorithms

• Graph representation (adjacency list, adjacency matrix)

• Graph traversal: BFS and DFS

– G can be directed or undirected

– run in linear time O(V + E)

– BFS used to: find connected components, reachability, check bipartiteness (G undirected),
compute shortest paths (G un-weighted, all edges have weight 1)

– DFS used to: find connected components, reachability, find directed cycles, topological
sort (G must be a DAG)

• Directed acyclic graphs (DAGs)

2

– Topological order: Order of the vertices such that for any edge (x, y), vertex x comes
before vertex y in topological order (all edges are “forward”)

– Any DAG can be topologically ordered in linear O(V + E) time either directly or
via DFS

– Many problems have easier/faster solutions on DAGs. E.g. SSSP on DAGs can be
computed inO(V +E) time; Longest paths on DAGs inO(V +E) (note: on general
graphs longest path is an NPC problem).

• Shortest paths (SSSP): Find shortest paths from a vertex to all other vertices

– On DAGs: O(V + E) time

– On general graphs with non-negative weights: Dijkstra’s runs in O(E lg V) time

– On general digraphs without negaative cycles: Bellman-Ford’s algorithm runs in
O(V · E) and can also detect negative-weight cycles

• Minimum spanning tree (MST)

– G: connected, undirected, weighted

– MST can be computed in O(E lg V) time with Prim’s or Kruskal’s algorithms

– Union-find data structure: supports Find and Join/Union operations.

13. Complexity:

• P : problems that can be solved in polynomial time (on a deterministic Turing machine)

• NP : problems that can be verified in polynomial time

• NPC: a problem is in NPC if it is in NP and all problems in NP reduce to it in
polynomial time. Intuitively, NPC is the core of hard problems in NP.

• Some NPC problems: SAT (satisfiability: is there an assignment that makes a given
formula true), traveling salesman (TSP: find minimum-cost tour), longest path (find the
longest simple path in a graph); find the largest clique subgraph (a clique is a complete
graph).

• All NPC problems reduce to each other therefore if any of them is shown to be in P, it
follows they all are and P = NP

• The $1M questions: Is P = NP? Not known. Most people believe the answer is NO.

3

